Where in the World? Demographic Patterns in Access Data

Mimi Recker, Beijie Xu, Christine Garrard, Utah State University Sherry Hsi, Lawrence Hall of Science, UC Berkeley

Web-based Educational Systems

Instructional Architect (IA)

- A tool for collecting and reusing online learning resources
 Utah-based
- Outreach program in New York and Michigan

Exploratorium Learning Resources Collection (ELRC)

- A digital library of over 700 science activities and
- instructional resources

 Based on a hands-on museum in California

Procedure

- 1. Track web metrics using Google Analytics.
- 2. Collect geo-referenced visits data.
- 3. Join and map geo-referenced data with public demographic datasets.
- 4. Analyze the association between the two.

Datasets

IA's Google Analytics report

Demographic data

This material is based in part upon work supported by the National Science Foundation under Grant Number 840738 & 0840745. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Highlights

- Collect geo-referenced data for two web-based educational systems.
- Map geo-referenced data with public demographic datasets.
- Conduct statistical analyses of these relationships to highlight significance predictor variables.

Visits from the Contiguous US

Both groups were successful in local dissemination activities.
 The ELRC also showed more widespread U.S. visitors.

Mapping Data

								median family income
New York	2791	New York	670	NEW YORK	1451	30	42922	5022
California	8268	Los Angeles	596	LOS ANGELES	2037	97	20683	4645
Missouri	1354	Seymour	559	WEBSTER	17	5	14502	3693
Texas	2698	San Antonio	191	BEXAR	491	41	18363	4372
California	8268	San Francisco	189	SAN FRANCISCO	123	3	34556	6354
Pennsylvani	1764	Philadelphia	176	PHILADELPHIA	328	57	16509	3703
Florida	2238	Miami	165	MIAMI-DADE	456	1	18497	4026
California	8268	Piedmont	147	ALAMEDA	410	27	26680	6585
Colorado	875	Boulder	146	BOULDER	99	3	28976	7057
Ohio	1572	Columbus	142	FRANKUN	386	77	23059	5390
Ilinois	1612	Chicago	141	COOK	1311	168	23227	5378
Indiana	769	Indianapolis	138	MARION	234	35	21789	4938
California	8268	Oakland	132	ALAMEDA	410	27	26680	6585
Pennsylvani	1764	Pittsburgh	129	ALLEGHENY	335	65	22491	4981
California	8268	Fresno	121	FRESNO	340	37	15495	3845
Florida	2238	Jacksonville	120	DUVAL	177	2	20753	4768
California	8268	Alameda	119	ALAMEDA	410	27	26680	6585
Texas	2698	Houston	111	HARRIS	974	72	21435	4900
California	8268	Lancaster	90	LOS ANGELES	2037	97	20683	4645
California	8268	Santa Rosa	87	SONOMA	184	42	25724	6192

Mapping data (con't)

Statistical Analysis

- Used negative binomial regression to account for skewed data.
- Dependent Variable:
 - > Number of visits
- Three independent variables:
 - > Population
 - > Number of school districts
 - > Per capita income

		popul	ation	school	districts	per capita income		
		Wald chi-square	p-value	Wald chi-square	p-value	Wald chi-square	p-value	
	IA	190.18	.000	.63	.43	27.57	.000	
	ELRC	71.36	.000	6.96	.008	11.70	.001	

- Population density significantly predicted number of online visitors.
- Per capita income also significantly predicted number of online visitors. This may be a function of the amount of resources (e.g., computers) available in the local schools and communities.